

HIT-HY 270 接着系注入方式アンカー

接着系注入方式アンカーシステム

Hilti HIT-HY 270

フォイルパック 330 ml (500 ml, 1400 ml あり)

アンカーボルト: HIT-V (炭素鋼) HIT-V-F HIT-V-R (ステンレス鋼) HIT-V-HCR (M6-M16)

内ねじスリーブ: HIT-IC (M8-M12)

メッシュスリーブ: HIT-SC (12-22)

特長

- 様々な種類の母材に適用可能な 接着系注入方式アンカー(記載 のない母材の場合は、現場試験 を実施の上、ご使用を判断くだ さい)
- レンガ/中空レンガ(粘土、ケイ 酸カルシウム)、建築用/軽量コ ンクリートブロック
- 2液混合タイプ
- HDE ディスペンサー使用により 多用途で容易な施工
- 多様性のある深さや取付物厚に 対応可能
- 小さいへりあきとアンカーピッチ
- 上向き施工にも適用可能

母材 荷重条件

レンガ 中空母材

静的/準静的 耐火

施工条件

その他

ハンマードリル穿孔 (回転打撃)

選択可能な埋込み深さ

小さいへりあき / アンカーピッチ

欧州技術認証 ETA

CE 適合製品

耐腐食

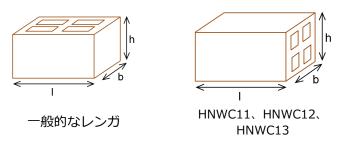
高耐腐食

PROFIS エンジニアリング 設計ソフト対応 (欧州仕様のみ)

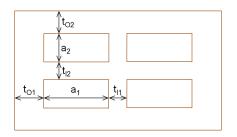
認証 / 証明書

• • • • • • • • • • • • • • • • • • • •		
種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証	DIBt, Berlin	ETA-13/1036 / 2017-12-12
ヒルティ社内データ ^{a)}	Hilti	2017-12-12
耐火試験報告書	MFPA, Leipzig	PB 3.2/14-179-1 / 2014-09-05

a) ヒルティ社内データは、EAD 330076-00-0604、EOTA TR053 と TR054 に準拠してヒルティが実施した試験と評価に基づきます。



レンガ種類と特性

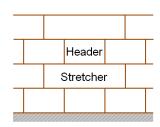

本技術データの使用上の注意

- レンガ(またはレンガ種類)の寸法/物理的な特性を下の表から特定/選択します。へりあきやアンカーピッチの基準情報は3ページに記載しています。
 - 下表の一番右側の列に、アンカーの引抜け破壊、レンガ抜け破壊、各レンガ個別の局所破壊の設計耐力を 記載したページを表記しています。これらの表に記載されたデータは、へりあきによる性能への影響がな い単体アンカーの場合に適用できます。適用外の場合は、ヒルティエンジニアにお問合せください。
- この技術データマニュアルに記載された耐力は、記載内容と同等の中空母材、または、同等または大きい寸法・同じ材料・同じ圧縮強度で作られたレンガのみに適用できます。適用外の場合は、現場載荷試験を実施します。ページ9をご参照ください。

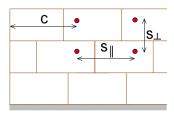
レンガ 外径寸法

中空部 仕様寸法

レンガ種類と特性 (日本仕様)


レンガ 記号	データ	名称	イメージ	寸法 [mm] レン	t _o [mm]	t _I [mm]	a [mm]	f _b [N/mm ²]	ρ [kg/dm³]	ページ
SC6	ヒルティ データ	レンガ		l: ≥ 210 b: ≥ 100 h: ≥ 60	-	-	-	15	-	6

レンガ 記号	データ	名称	イメージ	寸法 [mm]	t _o [mm]	t _I [mm]	a [mm]	f _b [N/mm²]	ρ [kg/dm³]	ページ
HNW C9	ヒルティ データ	C 種 空洞ブロック	B	l: 390 b: 100 h: 190	t ₀₂ : 23	t _{I1} : 22 t _{I2} :	a ₁ : 82 a ₂ : 54	8	-	7
HNW C10	ヒルティ データ	C 種 空洞ブロック	FEE	l: 390 b: ≥ 120 h: 190	t ₀₂ : 25	$t_{I1}: \geq 23$ $t_{I2}:$	a ₁ : <80 a ₂ : >67	8	-	7
HNWC 11	ヒルティ データ	スパンクリート	000	l: 1000 b: 1000 h: ≥ 85	t ₀₁ : t ₀₂ :22.5	t ₁₁ : 36 t ₁₂ :	a ₁ : 34 a ₂ : 40	30	-	7
HNWC 12	ヒルティ データ	スパンクリート	000	l: 1000 b: 1000 h: ≥ 120	t ₀₁ : t ₀₂ : 25.5	t ₁₁ : 30 t ₁₂ :	a ₁ : 50 a ₂ : 69	30	-	7
HNWC 13	ヒルティ データ	押出成形 セメント板		l: 1000 b: 500 h: ≥ 100	t ₀₁ : t ₀₂ :	t ₁₁ : 30 t ₁₂ :	a ₁ : a ₂ :	17	-	7

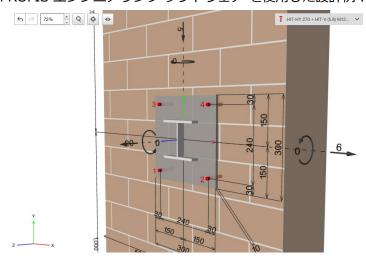

アンカー施工パラメータ

配置:

- Header (H): 壁厚を示す単体母材の最長寸法
- Stretcher (S): 壁長を示す単体母材の最長寸法

アンカーピッチとへりあき距離:

- c **-** へりあき距離
- s _| 横目地に平行方向アンカーピッチ
- s [.] 横目地に垂直方向アンカーピッチ


標準アンカーレイアウト:

- この技術マニュアルは、へりあきが c* と同等またはそれよりも大きい組積造での単体アンカーの荷重データを記載しています。
- **c*** は、アンカー性能がへりあきの影響を受けない場合のアンカーから壁端部までの距離
- アンカー同士間の最小アンカーピッチ = (3 x h_{ef}; レンガのサイズ各方向) いずれか最大のもの。これは手計算/本マニュアルの荷重表によりベースプレートを算出した場合に適用します。
- 簡素化した設計、群アンカーを含む本技術データが適用できない場合、ヒルティエンジニアにお問合せください。

PROFIS エンジニアリング ソフトウェア を使用した設計例:

HIT-V アンカー寸法

アンカーサイ	ズ	M6	M6 M8 M10 M12 M16					
+m:\ \ \ \ =	HIT-SC 使用	長さ:50~160						
埋込み長	HIT-SC なし h _{ef} [mm]		長さ: 50 ~ 300					

HIT-IC アンカー寸法

アンカーサイズ		M8x80	M10x80	M12x80
埋込み長	h _{ef} [mm]	80	80	80

設計

- 設計は、アンカー留付けやレンガ/中空母材に関する知識と経験のある設計者の責任下で行う。
- アンカー留付け荷重を考慮した上で検証可能な計算書と図面を準備します。アンカー位置を設計図上で示しま す。(例えば、支持物に関連するアンカー位置など)。
- 静的/準静的荷重でのアンカー留付けは、ETAG 029、Annex C、Design method A に準拠して設計します。

基準荷重データ (単体アンカー対象)

荷重表は単体アンカーの設計耐力値を示しています。

- 本項における全てのデータは下記条件による。
 へりあき c ≥ c*. 他のアプリケーションの場合、ヒルティエンジニアにお問合せください。
- 正しいアンカー施工 (施工条件、手順参照)

施工条件		Hilti HIT-HY 270(HIT-V または HIT-IC 使用時)				
		レンガ	中空母材			
ハンマードリル		回転・打撃モード	回転モード			
使用条件:乾燥 またに	は 湿潤	d/d - 乾燥(施工時・使用時とも)屋内使用 w/d - 乾燥または湿潤(施工時)、乾燥(使用時) 屋内使用 (ケイ酸カルシウムレンガを除く) w/w - 乾燥または湿潤(施工時・使用時とも) (ケイ酸カルシウムレンガを除く)				
施工方向 組積		水 ³	F			
施工方向 天井用レ	ンガ	上向	き			
施工時の母材温度		+5° C \sim +40° C	-5° C ∼ +40° C			
使用温度	温度範囲 Ta:	-40 °C ~ +40 °C (最大	長期 +24 °C 、短期 +40 °C)			
[[天门/四/文	温度範囲 Tb:	E範囲 Tb: -40 °C ∼ +80 °C (最大 長期 +50 °C 、短期				

設計 – 破壊モード

設計引張耐力は、下記の項目で、より低い値となる:

引張荷重による	条件	
鋼材破壊	<u>-</u>	$N_{Sd}^h \le N_{Rd,s} = N_{Rk,s}/\gamma_{Ms}$
アンカー引抜け破壊		$N_{Sd}^h \le N_{Rd,p} = N_{Rk,p}/\gamma_{Mm}$
母材コーン状破壊		$\begin{aligned} N_{Sd} &\leq N_{Rd,b} = N_{Rk,b}/\gamma_{Mm} \\ N_{Sd}^g &\leq N_{Rd}^g = N_{Rk}^g/\gamma_{Mm} \end{aligned}$
母材単体抜け出し	- 11	$N_{Sd} \le N_{Rd,pb} = N_{Rk,pb}/\gamma_{Mm}$

設計せん断耐力は、下記の項目で、より低い値となる:

せん断荷重によ	条件	
鋼材破壞	· · ·	$V_{Sd}^h \le V_{Rd,s} = V_{Rk,s}/\gamma_{Ms}$
局所的母材破壊	←> •	$V_{Sd} \le V_{Rd,b} = V_{Rk,b}/\gamma_{Mm}$ $V_{Sd}^g \le V_{Rd}^g = V_{Rk}^g/\gamma_{Mm}$
母材へり部破壊	- >	$\begin{aligned} V_{Sd} &\leq V_{Rd,c} = V_{Rk,c}/\gamma_{Mm} \\ V_{Sd}^g &\leq V_{Rd}^g = V_{Rk}^g/\gamma_{Mm} \end{aligned}$
母材単体押し出し	-	$V_{Sd} \le V_{Rd,pb} = V_{Rk,pb}/\gamma_{Mm}$

- 荷重は、目地の仕様による影響、群アンカー・アンカーピッチ・へりあき距離による影響を考慮します。
- この技術マニュアルの適用外の場合は、ヒルティエンジニアにお問合せください。

部分安全係数

母材	破壊(破断)モード - 注入式アンカー (γ _{Mm})
レンガ・中空母材	2,5

破壊(破断)モード – 鋼材 (γ _{Ms})						
引張荷重時	せん断荷重時					
	if $f_{uk} \le 800 \text{ N/mm}^2$, $f_{yk}/f_{uk} \le 0.8$	if f _{uk} > 800 N/mm² または f _{yk} /f _{uk} > 0,8				
$1,2 / (f_{yk} / f_{uk}) \ge 1,4$	$1.0 / (f_{yk} / f_{uk}) \ge 1.25$	1,5				

設計引張・せん断耐力 – HIT-V 鋼材破壊

アンカ	」ーサイズ		M6	M8	M10	M12	M16
	HIT-V 5.8(F)		6,7	12,0	19,3	28,0	52,7
N.	HIT-V 8.8(F)	[LAN]	10,7	19,3	30,7	44,7	84,0
$N_{Rd,s}$	HIT-V-R	[kN]	7,5	13,9	21,9	31,6	58,8
	HIT-V-HCR	-	10,7	19,3	30,7	44,7	84,0
	HIT-V 5.8(F)	– – [kN]	4,0	7,2	12,0	16,8	31,2
/	HIT-V 8.8(F)		6,4	12,0	18,4	27,2	50,4
$V_{Rd,s}$	HIT-V-R		4,5	8,3	12,8	19,2	35,3
	HIT-V-HCR		6,4	12,0	18,4	27,2	50,4
	HIT-V 5.8(F)		6,4	15,2	29,6	52,8	133,6
M	HIT-V 8.8(F)	[NIm]	9,6	24,0	48,0	84,0	212,8
M _{Rd,s}	HIT-V-R	- [Nm]	7,1	16,7	33,4	59,1	149,7
	HIT-V-HCR	-	9,6	24,0	48,0	84,0	212,8

設計引張・せん断耐力 – HIT-IC 鋼材破壊

アンカーサイズ			М8	M10	M12
$N_{Rd,s}$	HIT-IC	[Nm]	3,9	4,8	9,1
\/	HIT-V 5.8	[Nm]	7,2	12,0	16,8
$V_{Rd,s}$	Screw 8.8	[INIII]	12,0	18,4	27,2
M	HIT-V 5.8	[Mm]	15,2	29,6	52,8
$M_{Rd,s}$	Screw 8.8	[Nm]	24,0	48,0	84,0

設計引張・せん断耐力 (ヒルティ社内データ)

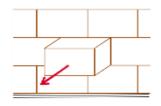
- 単体アンカーによるアンカー引抜け破壊、母材コーン状破壊、へりあき (c ≥ c*) での局所的母材破壊

			•		7070 (0	- ,			
					w/w _v	. w/d	d,	/d	
荷重種別	アンカーサイズ	h ef	f _b [N/mm²]	Та	Tb	Та	Tb		
		[111111]	[14/111111-]		荷重 [kN]				
	SC6 - レンガ								
	HIT-V + HIT-SC	M8, M10, M12, M16	≥ 50		1,4 (1,6 ^a)				
$N_{Rd,p} = N_{Rd,b}$	HIT-V + HIT-SC	M8, M10		15	2,2 (2,6 ^a)				
(c ≥ 100 mm)	HIT-V + HIT-SC HIT-IC + HIT-SC	M12, M16 M8, M10, M12	≥ 80		2,6 (3,0 ^a)				
	HIT-V + HIT-SC	M8, M10	> 50		2,6				
$V_{Rd,b}$	HIT-V + HIT-SC	M12, M16	≥ 50		3,2		3,2		
$(c \ge 1.5 h_{ef})$	HIT-V + HIT-SC	M8, M10	≥ 80	15			3,2		
, ,	HIT-V + HIT-SC HIT-IC + HIT-SC	M12, M16 M8, M10, M12			4,8				

a) エアーコンプレッサーによる清掃のみ

設計 引張/せん断 耐力 (ヒルティ社内データ) – 単体アンカーによるアンカー引抜け破壊、母材コーン状破壊、ヘリあき (c \geq c*) での局所的母材破壊

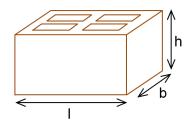
		h	_{ef} f _b	w/w、	w/d	d/d					
荷重種別	アンカーサイズ		h ef	T_b [N/mm²]	Та	Tb	Та	Tb			
			[]	[.v/]	荷重 [kN]						
2001	HNWC9 - C種	空洞ブロック (b = 10	00 mm))							
$N_{Rd,p} = N_{Rd,b}$ (c \geq 100 mm)	HIT-V + HIT-SC	M8, M10, M12, M16	50	8	1,0	0,8	1,0	0,8			
$V_{Rd,b}$ (c \geq 200 mm)	HIT-V + HIT-SC	M8, M10, M12, M16	50	8		2,	6				
2000	HNWC10 - C種 空洞ブロック (b ≥ 120 mm)										
$N_{Rd,p} = N_{Rd,b}$ (c $\geq 100 \text{ mm}$)	HIT-V + HIT-SC HIT-IC + HIT-SC	M8, M10, M12, M16 M8,M10, M12	≥ 50	8	1,0	0,8	1,0	0,8			
$V_{Rd,b}$ (c \geq 200 mm)	HIT-V + HIT-SC HIT-IC + HIT-SC	M8, M10, M12, M16 M8, M10, M12	≥ 50	8	2,6						
000	HNWC11 – スパンクリート (b ≥ 85 mm)										
$N_{Rd,p} = N_{Rd,b}$ (c \geq 100 mm)	HIT-V + HIT-SC	M8, M10, M12, M16	50	30	1,0	0,8	1,0	0,8			
$V_{Rd,b}$ (c $\geq 100 \text{ mm}$)	HIT-V + HIT-SC	M8, M10, M12, M16	50	30		4,	0				
000	HNWC12 - スパ	ンクリート (b ≥ 120	mm)								
$N_{Rd,p} = N_{Rd,b}$ (c $\geq 100 \text{ mm}$)	HIT-V + HIT-SC HIT-IC + HIT-SC	M8, M10, M12, M16 M8,M10, M12	≥ 50	30	1,0	0,8	1,0	0,8			
$V_{Rd,b}$ (c $\geq 100 \text{ mm}$)	HIT-V + HIT-SC HIT-IC + HIT-SC	M8, M10, M12, M16 M8, M10, M12	≥ 50	30	4,0						
	HNWC13 - 押出	成形セメント板 (b = 1	100 mm	1)							
$N_{Rd,p} = N_{Rd,b}$ (c \geq 50 mm)	HIT-V + HIT-SC	M8, M10, M12, M16	50	10	0,8	0,6	0,8	0,6			
$V_{Rd,b}$ (c $\geq 100 \text{ mm}$)	HIT-V + HIT-SC	M8, M10, M12, M16	50	10		2,	6				


設計 引張/せん断 耐力 – 母材単体抜け出し / 押し出し 破壊モード

母材単体の抜け出し (引張):

 $N_{Rd,pb} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) / (2.5 \cdot 1000)$ [kN]


 $N_{Rd,pb} = (2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) + b \cdot h \cdot f_{vko} / (2.5 \cdot 1000)$ [kN]


* この式は、縦方向目地が充填されている場合に適用します。

母材単体の押し出し (せん断):

 $V_{Rd,pb} = 2 \cdot I \cdot b \cdot (0.5 \cdot f_{vko} + 0.4 \cdot \sigma_d) / (2.5 \cdot 1000)$ [kN]

 σ_d = せん断に垂直な設計圧縮応力 (N/mm²)

fvko = EN 1996-1-1, Table 3.4 に準拠した初期せん断力

種別	モルタル強度	f _{vko} [N/mm ²]
レンガ(粘土)	M2,5 to M9	0,20
	M10 to M20	0,30
その他	M2,5 to M9	0,15
	M10 to M20	0,20

現場載荷試験

ヒルティ HIT-HY 270 ETA または この技術マニュアルデータに記載のないレンガや中空母材の場合、基準耐力は、ETAG029, Annex B に準拠し、現場載荷試験(引抜け試験や荷重確認試験)によって算出します。

試験結果の評価では、基準耐力は、製品により異なる影響を考慮した β-係数を見込みます。

下表に記載されたヒルティ HIT-HY 270 ETA のレンガ種別による β-係数:

使用カテゴリー		w/w、	w/d	d,	/d
温度範囲		Ta*	Tb*	Ta*	Tb*
母材	清掃方法				
レンガ(粘土)	CAC	0,96	0,96	0,96	0,96
EN 771-1	MC	0,84	0,84	0,84	0,84
レンガ(ケイ酸カルシウム) EN 771-2	CAC/MC	-	-	0,96	0,80
軽量コンクリートブロック(中実)	CAC	0,82	0,68	0,96	0,80
EN 771-3	MC	0,81	0,67	0,90	0,75
普通コンクリートブロック(中実) EN 771-3	CAC/MC	0,96	0,80	0,96	0,80
中空レンガ(粘土)	CAC	0,96	0,96	0,96	0,96
EN 771-1	MC	0,84	0,84	0,84	0,84
中空レンガ(ケイ酸カルシウム) EN 771-2	CAC/MC	-	-	0,96	0,80
中空軽量コンクリートブロック	CAC	0,69	0,57	0,81	0,67
EN 771-3	MC	0,68	0,56	0,76	0,63
中空普通コンクリートブロック EN 771-3	CAC/MC	0,96	0,80	0,96	0,80

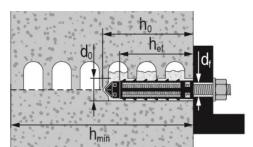
上表による β -係数の適用により、基準引張耐力 N_{Rk} が得られます。基準せん断耐力 V_{Rk} は、 N_{Rk} に基づいています。詳細については、ETAG 029, Annex B をご参照ください。

材料

材質

種類	材料				
全ねじボルト	炭素鋼 強度区分 5.8、破断伸び A5 > 8% 延性				
HIT-V 5.8 (F)	電気亜鉛めっき ≥ 5 μm; (F) 溶融亜鉛めっき ≥ 45 μm				
全ねじボルト	炭素鋼 強度区分 8.8、破断伸び A5 > 8% 延性				
HIT-V 8.8 (F)	電気亜鉛めっき ≥ 5 μm; (F) 溶融亜鉛めっき ≥ 45 μm				
全ねじボルト	ステンレス鋼 グレード A4、破断伸び A5 > 8% 延性、強度区分				
HIT-V-R	70、1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362				
全ネジボルト	高耐腐食鋼、破断伸び A5 > 8% 延性、1.4529, 1.4565				
HIT-V-HCR	· · · · · · · · · · · · · · · · · · ·				
	電気亜鉛めっき、溶融亜鉛めっき				
ワッシャー	ステンレス鋼 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362				
	高耐腐食鋼 1.4529, 1.4565 EN 10088				
	鋼 強度区分 8				
	電気亜鉛めっき ≥ 5 μm ; 溶融亜鉛めっき ≥ 45 μm				
ナット	強度区分 70, ステンレス鋼 グレード A4,				
	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362				
	強度区分 70、高耐腐食ステンレス鋼 1.4529; 1.4565				
内ねじスリーブ HIT-IC	破断伸び A5 > 8% 延性; 電気亜鉛めっき ≥ 5 μm				
メッシュスリーブ HIT-SC	フレーム: Polyfort FPP 20T ; メッシュ: PA6.6 N500/200				

母材:


- レンガ (大きいサイズや高強度レンガにも対応)
- 中空母材
- モルタル強度: EN 998-2: 2010 に準拠して M2.5
- その他のレンガ、中空レンガ、中空材料に関するアンカー基準耐力は、 9 ページの表に記載の β-係数を考慮して、ETAG 029, Annex B に準拠した現場載荷試験により算出します。

施工条件

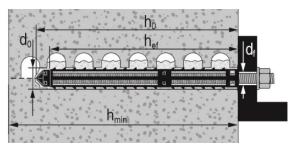
レンガ・中空母材へのメッシュスリーブ適用

 $50 \sim 80 \text{ mm}$ 埋込み長で HIT-V や HIT-IC を施工する場合、単体のメッシュスリーブを使用します。

メッシュスリーブ HIT-SC を使用した中空母材への全ねじボルト HIT-V または内ねじスリーブ HIT-IC 留付け

施工条件 単体のメッシュスリーブ HIT-SC を使用したレンガ・中空母材への全ねじボルト HIT-V 適用

	-		1					·		
HIT-V	nt Januarana	M6 M8		M10		M12		M16		
HIT-SC 使用		12x85	16x50	16x85	16x50	16x85	18x50	18x85	22x50	22x85
穿孔径(ビット呼び径)	d ₀ [mm]	12	16	16	16	16	18	18	22	22
穿孔長	h ₀ [mm]	95	60	95	60	95	60	95	60	95
有効埋込み長	h _{ef} [mm]	80	50	80	50	80	50	80	50	80
取付物の許容下穴径	d _f [mm]	7	9	9	12	12	14	14	18	18
最小壁厚	h _{min} [mm]	115	80	115	80	115	80	115	80	115
ブラシ HIT-RB	- [-]	12	16	16	16	16	18	18	22	22
トリガー数 HDM	- [-]	5	4	6	4	6	4	8	6	10
トリガー設定 HDE 500-A	- [-]	4	3	5	3	5	3	6	5	8
最大締付トルク "parpaing creux"ブロック除く	T _{max} [Nm]	0	3	3	4	4	6	6	8	8
最大締付トルク "parpaing creux"ブロック専用	T _{max} [Nm]	-	2	2	2	2	3	3	6	6

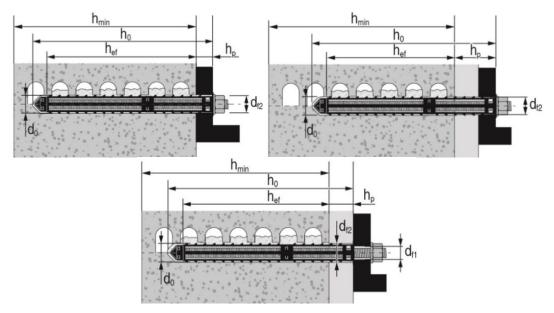

施工条件 メッシュスリーブ HIT-SC を使用したレンガ・中空母材への内ねじスリーブ HIT-IC 適用

HIT-IC		M8	M10	M12
HIT-SC 使用	€====	16x85	18x85	22x85
穿孔径(ビット呼び径)	d ₀ [mm]	16	18	22
穿孔長	h ₀ [mm]	95	95	95
有効埋込み長	h _{ef} [mm]	80	80	80
ねじ部 埋込み長	h _s [mm]	8…75	10…75	12…75
取付物の許容下穴径	d _f [mm]	9	12	14
最小壁厚	h _{min} [mm]	115	115	115
ブラシ HIT-RB	- [-]	16	18	22
トリガー数 HDM	- [-]	6	8	10
トリガー設定 HDE 500-A	- [-]	5	6	8
最大締付トルク	T _{max} [Nm]	3	4	6

メッシュスリーブのレンガ・中空母材への適用 (続き)

130 \sim 160 mm の埋込み長で HIT-V や HIT-IC を施工する場合、 2 つの連結したスリーブを使用します。

中空母材への全ねじボルト HIT-V と2つのメッシュスリーブ HIT-SC を使用した深い埋込み

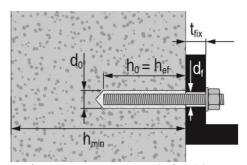

施工条件 全ねじボルト HIT-V と2つの連結したメッシュスリーブ HIT-SC のレンガ・中空母材への適用

HIT-V	manan	mamamata M8		18	M10		M12		M16	
HIT-SC 使用	•		16x50 +	16x85 +	16x50 +	16x85 +	18x50 +	18x85 +	22x50 +	22x85 +
			16x85	16x85	16x85	16x85	18x85	18x85	22x85	22x85
穿孔径(ビット呼び径)	d_0	[mm]	16	16	16	16	18	18	22	22
穿孔長	h ₀	[mm]	145	180	145	180	145	180	145	180
有効埋込み長	h _{ef}	[mm]	130	160	130	160	130	160	130	160
取付物の許容下穴径	d_f	[mm]	9	9	12	12	14	14	18	18
最小壁厚	h _{min}	[mm]	195	230	195	230	195	230	195	230
ブラシ HIT-RB	-	[-]	16	16	16	16	18	18	22	22
トリガー数 HDM	-	[-]	4+6	6+6	4+6	6+6	4+8	8+8	6+10	10+10
トリガー設定 HDE 500-A	-	[-]	3+5	5+5	3+5	5+5	3+6	6+6	5+8	8+8
最大締付トルク	T_{max}	[Nm]	3	3	4	4	6	6	8	8

メッシュスリーブのレンガ・中空母材への適用 (続き)

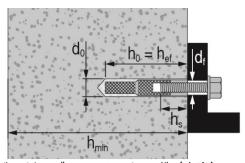
全ねじボルト HIT-V による留付けの場合、2つの連結したスリーブを使用します。

レンガ・中空母材への全ねじボルト HIT-V と 2 つのメッシュスリーブ HIT-SC を使用した 取付物 と(または)荷重を支持しない層の施工


施工条件 取付物と(または)荷重を支持しない層の留付け 全ねじボルト HIT-V と2つのメッシュスリーブ HIT-SC のレンガ・中空母材への適用

HIT-V	mumuum	ļa at	M	18	M10		M12		M16	
			16x50	16x85	16x50	16x85	18x50	18x85	22x50	22x85
HIT-SC 使用	•	(*********	+	+	+	+	+	+	+	+
			16x85	16x85	16x85	16x85	18x85	18x85	22x85	22x85
穿孔径(ビット呼び径)	d_0	[mm]	16	16	16	16	18	18	22	22
穿孔長	h_0	[mm]	145	180	145	180	145	180	145	180
有効埋込み長	$h_{\text{ef,min}}$	[mm]	80	80	80	80	80	80	80	80
荷重を支持しない層と取付物 最大厚み (現物合わせ施工)	h _{p,max}		50	80	50	80	50	80	50	80
取付物の許容下穴径 (先行設置施工)	d _{f1}	[mm]	9	9	12	12	14	14	18	18
取付物の許容下穴径 (現物合わせ施工)	d_{f2}	[mm]	17	17	17	17	19	19	23	23
最小壁厚	h _{min}	[mm]	h _{ef} +65	h _{ef} +70						
ブラシ HIT-RB	-	[-]	16	16	16	16	18	18	22	22
トリガー数 HDM	-	[-]	4+6	6+6	4+6	6+6	4+8	8+8	6+10	10+10
トリガー設定 HDE 500-A	-	[-]	3+5	5+5	3+5	5+5	5+8	8+8	5+8	8+8
最大締付トルク "parpaing creux"ブロック除く	T _{max}	[Nm]	3	3	4	4	6	6	8	8
最大締付トルク "parpaing creux"ブロック専用	T_{max}	[Nm]	2	2	2	2	3	3	6	6

メッシュスリーブ無しでのレンガへの適用


ヒルティは、レンガへの留付けには常にメッシュスリーブ使用を推奨しています。穴や空隙がないことが確認できる場合に限り、レンガ(中実)に対してメッシュスリーブ無しのアンカー施工が可能になります。

全ねじボルト HIT-V のレンガ (中実) への適用

施工条件 全ねじボルト HIT-V のレンガ (中実) への適用

全ねじボルト HIT-V	act managem	M8	M10	M12	M16			
穿孔径(ビット呼び径)	d_0 [mm]	10	12	14	18			
穿孔長 = 有効埋込み長	$h_0 = h_{ef}$ [mm]	50…300	50…300	50…300	50…300			
取付物の許容下穴径	d _f [mm]	9	12	14	18			
最小壁厚	h _{min} [mm]	h ₀ +30	h ₀ +30	$h_0 + 30$	h ₀ +36			
ブラシ HIT-RB	- [-]	10	12	14	18			
最大締付トルク	T _{max} [Nm]	5	8	10	10			

内ねじスリーブ HIT-IC のレンガ (中実) への適用

施工条件 内ねじスリーブ HIT-IC のレンガ (中実) への適用

HIT-IC		M8x80	M10x80	M12x80
穿孔径(ビット呼び径)	d_0 [mm]	14	16	18
穿孔長 = 有効埋込み長	h ₀ = h _{ef} [mm]	80	80	80
ねじ部 埋込み長	h _s [mm]	8…75	10…75	12…75
取付物の許容下穴径	d _f [mm]	9	12	14
最小壁厚	h _{min} [mm]	115	115	115
ブラシ HIT-RB	- [-]	14	16	18
最大締付トルク	T _{max} [Nm]	5	8	10

標準施工工具

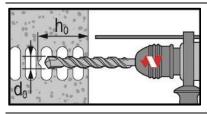
アンカーサイズ	M6	M8	M10	M12	M16				
ロータリーハンマードリル	TE2(A) - TE30(A)								
その他の工具		ニアーコンプレ 清掃用ブ	ッサーまたは ラシ、ディス	ダストポンプ、 ペンサー					

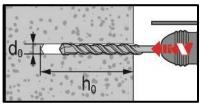
ドリルツールと清掃ツールの組合せ

HIT-V ^{a)}	HIT-V +	HIT-IC ^{a)}	HIT-IC +	ハンマードリル	ブラシ HIT-RB
	メッシュスリーブ		メッシュスリーブ	d ₀ [mm]	size [mm]
<i>пиниши</i> Ди			←	TIN	***************************************
-	-	-	-	8	8
M8	-	-	-	10	10
M10	-	-	-	12	12
M12	-	M8	-	14	14
-	M8	M10	M8	16	16
-	M10	-	-	16	16
M16	M12	M12	M10	18	18
-	M16	-	M12	22	22

a) メッシュスリーブ HIT-SC 無し施工は、レンガ(中実)に限ります。

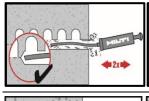
施工手順

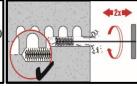

*施工の詳細については製品パッケージに付属の取扱説明書を参照してください。

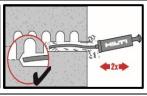

安全上の注意点

適切で安全な施工のために使用前に材料安全データシート(MSDS)を確認してください。Hilti HIT-HY 270 を取扱い時には適した保護メガネと保護手袋を着用してください。

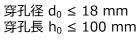
穿孔

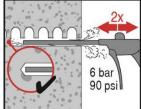


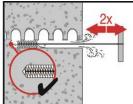

中空母材:回転モード

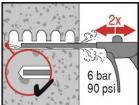


レンガ:回転・打撃モード

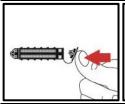

清掃

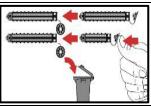


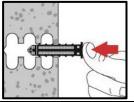




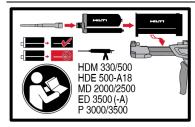
手動清掃 (MC)

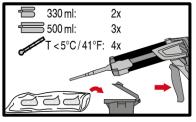



エアーコンプレッサーによる清掃 (CAC)

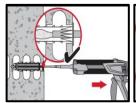

穿孔長 h₀ ≤ 300 mm

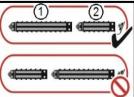
樹脂注入準備(メッシュスリーブを使用するレンガ・中空母材の場合)

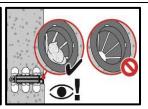




蓋を閉じ、メッシュスリーブを手で挿入

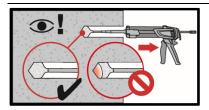

全てのアプリケーション対象



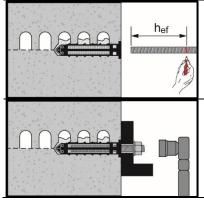


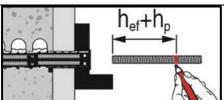
フォイルパックの容量による 所定の捨てショットを行い注入準備

空隙を作らないように樹脂を注入する方法



注入方法 1


メッシュスリーブ HIT-SC を2つ使用 する場合、延長スリーブを使用



注入方法 2

レンガ(中実)の場合はメッシュスリ ーブを使用せず、直接注入

アンカー筋の挿入

マーキングとアンカー筋挿入

ゲル状時間 t_{work} 内に、所定の埋込み深さまで挿入

アンカー筋へ載荷

硬化時間 t_{cure} 経過後に取付物を設置

* 所定のトルク値 T_{max} を超える締付け をしない。